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EFFECT OF COMBINED LINEAR AND OSCILLATORY ACCELEFUTION 

ON PILOT ATTITUDE-CONTROL CAPABILITIES 

By Constantine B. Dolkas and John D. Stewart 

Ames Research Center 
Moffett Field, Cal i f .  

SUMMARY 

Data are presented t o  show the e f fec ts  of superimposing vibrat ion a t  
11 cycles per second on steady l i nea r  acceleration on the  tracking a b i l i t y  of 
a human p i l o t  i n  a s t a b i l i t y -  and rate-augmented vehicle with dynamics typ ica l  
of a large high-thrust  rocket. 
3 .5  g and t he  osc i l l a to ry  s t resses  varied from 0 t o  23.0 g at  11 cps. 
random-appearing compensatory tracking problem w a s  presented t o  t he  p i l o t  i n  
t he  p i t c h  plane, although the  p i l o t  controlled both p i t ch  and yaw. PITO attempt 
w a s  made i n  t h i s  study t o  simulate additional p i l o t  t asks  such as monitoring 
of  c r i t i c a l  launch vehicle and spacecraft performance and s t a tus  displays 
which would be required i n  the  r e a l  s i tuat ion.  Various damper-failure situa- 
t i ons  were investigated,  and cer ta in  charac te r i s t ics  due t o  autopi lot  non- 
l i n e a r i t i e s  were studied. Effects  on the  tracking eff ic iency of dividing the  
p i l o t ' s  a t ten t ion  between p i t ch  and yaw channels were a l so  examined. 

The l inear  accelerations ranged from 1 t o  
A 

INTRODUCTION 

If man i s  t o  be used e f fec t ive ly  and re l iab ly  i n  advanced aerospace 
guidance and control  systems, more must be known about h i s  performance i n  cer-  
t a i n  pa r t i cu la r ly  s t r e s s fu l  environments. The f e a s i b i l i t y  of a p i l o t  control-  
l i n g  a t t i t u d e  i n  the  atmosphere entry maneuver w a s  evaluated, f o r  example, i n  
s tudies  of the e f f ec t s  of steady l i nea r  acceleration ( r e f s .  1 through 8 ) .  
Tolerable physical  l i m i t s  and ant ic ipated tracking prof ic ienc ies  of human 
p i l o t s  were ascer ta ined and f eas ib l e  operating envelopes f o r  such vehicles 
were e stab li shed. 

Consideration i s  now being given, f o r  po ten t ia l  gains i n  system rel iabi l -  
i t y ,  t o  a p i l o t  control l ing large,  f lex ib le ,  high-thrust  launch vehicles,  
which superimpose a longitudinal vibrat ion stress on a r e l a t ive ly  steady l i n -  
ear accelerat ion.  
from an aeromedical viewpoint i n  references 9 through 16, which contain data  
on the  k ines the t i c  response and the e f fec ts  on the  v iscera l  organs and v isua l  
system. However, as pointed out i n  reference 17, caution must be used i n  
in te rpre t ing  these types of data t o  es tabl ish p i l o t  t ask  performance c r i t e r i a  
and operating l i m i t s .  Further, l i t t l e  i s  known concerning task  performance 
under combined l i nea r  and osc i l l a to ry  s t resses .  

The e f fec ts  of vibration have been considered separately 



For these reasons, as pa r t  of  a general  program of research on c 

environmental stress, the  e f f ec t s  of simultaneous vibrat ion and l i nea r  accel-  
e ra t ion  on p i l o t  performance were studied on the  five-degree-of-freedom simu- 
l a t o r  at Ames Research Center. Specif ical ly ,  p i l o t s  were subjected (on an 
open-loop b a s i s )  t o  nominal longitudinal vibratory stresses at  11 cps of up 
t o  k 3 . O  g superimposed on nominal steady loads of 1.0 g, 2.0 g, and 3.5 g .  
These s t resses  are  typ ica l  of a c l a s s  of large l i qu id  propelled rockets.  The 
p i l o t s  were given a random-appearing tracking task  and were scored according 
t o  a root-mean-square performance c r i te r ion ,  i n  addition t o  noting subjective 
p i l o t  opinion. The dynamics simulated consisted of closed-loop a t t i t u d e  and 
rate s tab i l iza t ion  of  the r i g i d  body p i t ch  and yaw modes of an advanced 
booster vehicle.  
including autopi lot  f a i l u r e  (which w a s  an extension of  other  work ( ref .  18)) 
and the  e f f ec t s  of engine thrust-axis  servo rate l imit ing.  

Certain associated problems were invest igated b r i e f ly ,  
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engine servo output, deg 

task  input, p i tch ,  deg 

SYMBOLS 

accelerat ion f ac to r  i n  longitudinal direct ion,  x ( r a t i o  of acceler-  
a t ing  force t o  weight), g 

acceleration f ac to r  i n  lateral direct ion,  Y ( r a t i o  of accelerat ing 
force t o  weight), g 

acceleration f ac to r  i n  normal direct ion,  z ( r a t i o  of accelerat ing 
force t o  weight), g 

p i l o t  control  force,  l b  

airframe gain 

engine servo gain 

Laplace transform variable 

S t a b i l i t y  Augmentation System 

time, see 

p i l o t  tracking eff ic iency,  
1ooJ'(ei2 - eE2)dt  

2 sei  d t  

error s igna l  input t o  engine servo, deg 

human operator control  output, i n .  (maximum deflect ion of SH 
equivalent t o  10' 6s) 



tracking er ror ,  pi tch,  deg 

engine servo t i m e  constant, see 

y ~ w  vehicle error ,  deg 

angular frequency, radians/sec 

vehicle undamped short-period natural  frequency i n  p i t ch  and yaw, 
radians/ see 

SIMITLATION EQUIPMENT 

Motion Generators 

The pr inc ipa l  f a c i l i t y  used w a s  t he  five-degree-of-freedom simulator a t  
The p i l o t  sat i n  a cab or iented as shown the  Ames Research Center ( f i g .  1). 

i n  f igure  2(a)  so t h a t  steady accelerations were imposed perpendicular t o  the  
plane of t h e  subject ' s  chest  i n  the  eyeballs-in direct ion,  according t o  the 
convention establ ished i n  reference 2. The loads were imposed on an open-loop 
bas i s  (see f i g .  5 ) ,  and the  dynamic response of t he  launch vehicle w a s  appar- 
ent  t o  the  p i l o t  only through a compensatory visual display; t h a t  i s ,  t h e  d i s -  
play showedthe p i l o t  only the  error i n  tracking and not t he  vehicle a t t i t ude .  

To simulate typ ica l  o sc i l l a to ry  s t resses  of 11 cps, t he  p i l o t  seat w a s  
vibrated s inusoidal ly  by an especial ly  designed device. 
hydraul ical ly  driven servo which produced t r ans l a t iona l  motion along the  axis 
of t he  vector sum resu l t ing  from the  natural  force  of gravi ty  and the  c e n t r i f -  
ugal  force .  
loads on t h e  centrifuge.  
cen t r i f ige  supplied f l u i d  t o  a ve r t i ca l ly  mounted cylinder which produced t h e  
seat motion through a toggle linkage. Some movement of t he  counterweight w a s  
a lso allowed through t h i s  toggle switch. (See f i g .  2 ( b ) ) .  
device w a s  t h a t  t he  amplitude of vibration could not equal o r  exceed the  
s teady-state  load ( i . e . ,  a posi t ive force had t o  be present at a l l  t imes) .  

The device w a s  a 

A counterbalancing weight minimized the  e f f ec t  of o sc i l l a to ry  
A hydraulic pump near t he  ro t a t iona l  axis of t he  

A l imi ta t ion  of the 

The accelerat ions of t he  chair  i n  the X direct ion,  Ax, resu l t ing  from 
t h e  operation of this  device are  described i n  f igure  3. The outputs of accel-  
erometers f ixed  t o  the  chair  were f ed  into a spectrum analyzer t o  detect  the  
ac tua l  amplitudes and frequencies present i n  the  records. The nominal input 
amplitudes of accelerat ion values are as shown i n  the f igure  legend and the  
ac tua l  outputs from the  analyzer are plot ted on the  ordinate.  The data  show 
the  existence of energy a t  higher frequencies. 
ac tua l  outputs from a l l  t he  frequencies i s  shown i n  f igu re  4 as a function of 
t h e  nominal input values. 
assumed due t o  phase differences in  the components of vibrat ion.  It i s  empha- 
s ized t h a t  t h e  values of steady s t a t e  or vibratory g i n  the  f igu res  of t h i s  
repor t  are t h e  nominal input values. The actual  values can be obtained from 
f igure  4. 

The algebraic sum of the  

The discrepancies from the  nominal values a re  

3 



Vehicle Dynamics b 

The vehicle dynamics s i m l a t e d  ( f i g .  5)  were typ ica l  of la rge  high-thrust  
booster rockets, and the  f l i g h t  condition simulated w a s  a high-al t i tude f i r s t -  
stage s i tua t ion .  
w a s  aided in  the  p i t ch  and yaw channels by an autopi lot  with typ ica l  param- 
e t e r s  as shown i n  f igure  5. 
posi t ion servo ( th rus t  axis)  w a s  rate l imited at +2oo6sec and posi t ion l imited 
a t  +loo. 

The airframe i t s e l f  w a s  unstable (see f i g .  5 ) ;  however, it 

Except f o r  a b r i e f  s e r i e s  of runs, t he  engine 

Some t e s t s  were made with r a t e  l i m i t s  of +5 /see and +50°/sec. 

Control and Display 

Figure 6 i s  a general view of the  cab showing the  display and cont ro l le r .  
The force-deflection charac te r i s t ics  are presented i n  f igure  7. 
l e r  w a s  designed t o  allow p i t ch  and yaw control  but t o  prevent the  11 cps 
longitudinal vibrations f rom being f ed  through t o  t he  p i l o t  output by making 
the  p i t ch  and yaw controls perpendicular t o  the  Ax accelerat ion.  Analysis 
of a run through a spectrum analyzer shows t h a t  there  w a s  very l i t t l e  energy 
present a t  t ha t  frequency. 

The control-  

The compensatory display i s  shown i n  f igure  6.  

i n  f i g .  5) with a scaling of 10' e r ro r  per inch. 

The horizontal  f l i g h t  
direct ion needle nearest  the  p i l o t  w a s  driven t o  indicate  p i t ch  a t t i t u d e  error  
(0c The v e r t i c a l  l i n e  moved 
t o  present the heading with no addi t ional  closed-loop problem. 
symbol and b a l l  remained f ixed as references f o r  the  moving elements. 

The airplane 

P i l o t  Restraint  Equipment 

The p i l o t s  were res t ra ined  by an A i r  Force B-5 harness, with th igh  s t raps  
t o  couple the  legs t o  the  seat pan. The harness w a s  t i g h t  enough t o  prevent 
body movement r e l a t i v e  t o  the  sea t  pan. The subjects a l so  wore Mercury f u l l  
pressure s u i t  helmets with appropriate l i n e r s  sized f o r  individual  f i t .  
N a v y  Mark I V  pressure s u i t  communication system w a s  used, and the  helmet was 
attached t o  the  standard neck r ing  which, i n  turn,  was attached by s t raps  from 
around the subject ' s  torso.  
eye height t o  the  instrument panel angle f o r  each subject.  

A 

Balsa wood spacers were used f o r  adjust ing the  

Tests and Procedure 

The test  conditions for t h i s  invest igat ion are out l ined i n  table I. A l l  
f i v e  subjects were NASA research p i l o t s  who had extensive experience with the  
Ames five-degree-of-freedom simulator without the  osc i l l a to ry  environment. 
A l l  the  p i lo t s  were t e s t ed  through the  complete steady 2 g se r i e s .  
of time limitations,  Only P i l o t s  A and B performed through most of the 

Because 

4 



. remaining portion of t he  program, and only p i l o t  B was  t e s t ed  f o r  the  series 
of sudden p i t c h  damper f a i l u r e s  a t  the highest t e s t  g l eve l s  i n  both vibratory 
and s teady-state  environments. 

Sine wave 
component 

1 

2 

Except f o r  unannounced damper fa i lures  later i n  the  program, the  param- 
eters of t he  vehicle remained constant and only the  stress environment of the 
p i l o t  w a s  varied. The t a sk  presented t o  the p i l o t s  w a s  i den t i ca l  i n  each 
case; however, there  w a s  no evidence of p i l o t s  committing the task  t o  memory. 

I Relative 
mean square 

amp 1 i tu(  

Frequency, 
radians/sec 

0.28 1.0 

-74 * 5  

To ascer ta in  any res idua l  e f f ec t s  of a high s t r e s s  environment, the  p i l o t  
w a s  given the t a sk  of tracking f o r  60 seconds under a s t a t i c  1 g EBD condition 
immediately before and after the  45-second dynamic run. 
s ign i f icant  difference,  t h i s  procedure was discont.inued toward the  la t te r  por- 
t i o n  of  the program i n  order t o  reduce p i l o t  fa t igue .  

Since there  w a s  no 

1.21 

30 

The motion simulator w a s  brought up t o  speed gradually and the p i l o t  w a s  
asked t o  t rack  throughout t he  dynamic portion of the run; however, the  compu- 
t a t i o n  and evaluation (or scoring) was done only i n  the  45-second port ion when 
the  motion s imulator  w a s  up t o  speed. Figure 9 i l l u s t r a t e s  a typ ica l  run. 

9 15  
* 07 

The random-appearing t a sk  w a s  a summation of four s ine waves, according 
t o  the  following tab le .  It w a s  ident ica l  t o  t h a t  used i n  reference 8 so t h a t  
it would have continuity with previous investigations.  Posi t ive d i rec t ion  
p i l o t  p i t ch  control  w a s  programmed t o  be in  the  same direct ion as pos i t ive  
(as shown i n  f i g .  5 ) .  

The task input s ignal ,  used only i n  the p i t c h  channel, w a s  scaled so t h a t  

Figure 8 shows the power spectrum 
i t s  maxim excursion corresponded t o  5' vehicle att i tude,  which a l so  corre-  
sponded t o  half  of the  f u l l  display height. 
of the task  input signal.  
tracking task  w a s  computed quant i ta t ively by the  analog computer. The com- 
puter  used an eff ic iency c i r c u i t  determined from t h e  r a e  of difference of 
t he  mean  square task  input, 8i2, and mean square e r ro r ,  eE2, t o  the  mean square 
of t h e  t a sk  input (see ref. 8) or 

The eff ic iency of t he  p i l o t  i n  performing the  

5 



Because of the  integrat ion over time, T, the  expression f o r  T.E. tends * 
t o  smooth out var ia t ions i n  efficiency. However, some rapid changes i n  e r ror ,  
due possibly t o  momentary p i l o t  ina t ten t ion  or confusion, did occur. Now, the  
human being i n  the  loop i s  considered t o  be a generator of a random process 
which, i n  many cases, does change with time. This i s  e s sen t i a l ly  a nonsta- 
t ionary time process. 
values fo r  a run and can be considered as r e s u l t s  of a quasi-stationary time 
se r i e s .  A s  such, then, the  trends of these r e s u l t s  are applicable.  

However, the T . E . ' s  obtained and p lo t ted  were averaged 

To judge the vehicle handling qua l i t i e s  t he  p i l o t s  used the  Cooper p i l o t -  
r a t ing  system, reference 19 (table 11). Before the runs were made, the  p i l o t s  
were asked t o  consider t ha t  they were control l ing a high-thrust  launch vehicle. 

F@SULTS AND DISCUSSION 

P i l o t  Opinion 

Before considering the  e f f ec t s  of increasing accelerat ion loads, it i s  
in te res t ing  t o  compare the  p i l o t  opinions of the present high-thrust  launch 
vehicle with those f o r  a conventional a i rplane with s i m i l a r  dynamics. 
normal 1 g environment with no vibration, and with the  p i t ch  and yaw auto- 
p i l o t s  operating ( the  vehicle i s  unstable otherwise), the  average p i l o t  r a t ing  
w a s  about 3 ( r e f e r  t o  t ab le  11). Reference 2 presents r e s u l t s  based on the  
same pi lot ing task  of t he  present paper, but  f o r  a configuration with a wide 
range of dynamics whose perturbations of motion were a l s o  imposed on a cen- 
t r i fuge .  
dynamics tes ted ,  the p i l o t s  rated the  launch vehicle the  same as an a i rplane 
with similar dynamic behavior. 

I n  the  

The comparison i n  f igure  10 indicates  that f o r  the one f ixed  s e t  of 

The e f f ec t  of increasing steady l i nea r  accelerat ion alone i s  shown i n  
f igu re  11. A s  would be expected from reference 2 and elsewhere, there  w a s  a 
moderate degradation i n  subjective r a t ing  t o  the  "unsatisfactory" l eve l  a t  the  
t e s t  l i m i t  o f  3.5 g. 
shown i n  f i gu re  12. The average opinion degrades t o  "unacceptable," reaching 
a value of 9.0 a t  t he  t e s t  l i m i t s ,  3 .5  g +3 g.  
predominant fac tor ,  and becomes unacceptable i n  t he  region of k1.0 t o  kl.5 g. 

The e f f ec t  of superimposing the  v ibra t iona l  s t r e s s  i s  

The vibrat ion i s  obviously the  

The individual ra t ings  f o r  each subject a re  shown i n  f igu re  13. Sa t i s -  
fac tory  leve ls  ( i . e . ,  p i l o t  ra t ings  of 3.5 or b e t t e r )  were not achieved except 
f o r  subjects B and C.  The spread i n  opinion between the  subjects  i s  consid- 
ered reasonable i n  view of t he  r e l a t i v e  novelty of the  environment and the  
s i tua t ion  being evaluated. 

Some ef fec ts  of SAS configuration on acceptab i l i ty  were a l s o  invest igated 
( f i g .  1 4 ) .  P i lo ted  runs were made with the  yaw SAS i n  and ou t .  A l l  o ther  
conditions were the  same. With no SAS control  feedback i n  the  yaw channel, 
any inadvertent control  motion of  t he  p i l o t  i n to  the  yaw channel allowed the  
yaw error t o  grow. 
the  p i lo t  could devote a l l  h i s  a t t en t ion  t o  cont ro l l ing  i n  the  p i t ch  channel, 

Previously, with the  p i t ch  and yaw autopi lot  i n  operation, 

6 
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. whereas w i t h  the  yaw autopi lot  out some of h i s  a t ten t ion  had t o  be  diver ted t o  
t h a t  channel, with a resu l t ing  degradation i n  opinion r a t ing  of about two 
points  . 

Control-Task Performance 

Considering f i rs t  the  e f fec ts  of steady accelerat ion alone, t he  averaged 
tracking e f f i c i enc ie s  f o r  a l l  subjects me  again compared i n  f igure  1-5 w i t h  
the  r e s u l t s  from reference 2.  
s ign i f icant  e f f ec t  of steady acceleration alone t o  the l i m i t  of 3.5 g, as 
would be expected from previous investigations.  The present "launch vehicle" 
data  are generally between the  well-damped and l i g h t l y  damped "airplane" data  
from reference 2, except f o r  the r e l a t ive ly  low value of tracking eff ic iency 
a t  2 g. It was con- 
sidered prudent t o  order the  tes ts  so that the  p i l o t s  were f i rs t  exposed t o  
some steady acceleration (2.0 g) and then b u i l t  up progressively i n  both accel- 
erat ion and vibrat ion.  
without vibration, they had accumulated considerable specif ic  task  experience. 
Repeating t h e  2.0 g runs at the  end of the program w a s  not considered 
warranted. 

The data  from t h e  present study show l i t t l e  

The l a t t e r  r e s u l t s  from the  par t icu lar  t e s t  procedure. 

Thus, by the  t i m e  t he  p i l o t s  were t e s t ed  at 3.5 g 

The e f f ec t s  of superimposing vibration are shown i n  f igu re  16 with the  
data  p lo t t ed  by subject t o  show the  spread i n  individual performance. The 
t rends shown i n  this f igure  agree w i t h  the p i l o t  opinion data of f i gu res  12 
and 13. 
vibrat ion l eve l s  and the  performance degrades markedly above the l e v e l  of 
about 51.5 g ( f i g .  16).  
t he  higher s teady-state  l eve l  (3.5 g) and a t  the  t e s t  l i m i t  of k3.0 g. 

The vibrat ion i s  the predominant e f f ec t  at the  high osc i l l a to ry  

The p i l o t s  tracking ef f ic ienc ies  were qui te  low f o r  

An in t e re s t ing  conjecture as t o  the  reason f o r  t he  degradation of t rack-  

Without vibration, t h e  p i l o t s  were able  t o  
ing e f f ic iency  with increasing vibrat ion w a s  brought out by the p i l o t s '  com- 
ments during the  tes t  program. 
follow the  t a r g e t  motion (d i rec t iona l  needles i n  the  t a sk  displqy) and e a s i l y  
perceive reversa ls  and rate of motion of the needles. 
were ge t t ing  "rate" information v isua l ly  by noting how fast the  needles were 
moving. A s  vibrat ion w a s  introduced, t he  ac tua l  posi t ion of t he  t a r g e t  became 
a blur and only the  maximum excursions or peak-to-peak amplitudes were sensed; 
t h e  rate information was l o s t .  The probable e f f ec t  would be that the p i l o t  
an t ic ipa t ion  lead t i m e  constant, usua l lyup  t o  2 seconds, i n  the  human t r ans fe r  
function (see r e f .  2 0 ) ,  w a s  removed srith the r e su l t i ng  decrease i n  tracking 
effect iveness .  

I n  other words, they 

T h i s  conjecture appears t o  be reasonable inasmuch as references 8 and 21 
have shown t h a t  tracking with the  vehicle dynamics used i n  the present prob- 
l e m  generally requires  s ign i f icant  amounts of lead t o  be generated by the  
p i l o t .  Normally, t h i s  e f f ec t  would be substantiated quant i ta t ively by deduc- 
ing the  p i l o t  t r ans fe r  function f rom the present t es t  data and comparing the 
lead terms required with and without vibration. However, as can be seen i n  
some of  the  t i m e  h i s t o r i e s  t o  be considered later t o  describe the  autopi lot  
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study, one addi t ional  e f f ec t  of vibrat ion environment w a s  t h a t  t he  p i l o t  
frequently encountered the  booster engine posi t ion and r a t e  l i m i t s  of the  
present control system. This introduced nonl inear i t ies  which complicated the  
analysis of the p i l o t  describing function. This point has been emphasized i n  
t h i s  report  so tha t  fu ture  experiments i n  t h i s  environment can be designed 
with t h i s  problem i n  mind. 

* 

The ef fec t  on control  t a sk  performance of removing the  yaw s t a b i l i t y  aug- 
mentation system i s  summarized i n  f igures  l7(a) and ( b ) .  
(or unexpected) performance of p i l o t  B a t  k3.O g vibrat ion condition, a com- 
parison of the averaged values showed a de f in i t e  degradation i n  performance 
due t o  the diversion of t he  p i l o t s '  a t ten t ion ,  which cor re la tes  w e l l  with the  
p i l o t  opinion data presented i n  f igure  14 .  
presented i n  figure 18 where the  yaw SAS w a s  removed t o  compare with a normal 
s i tua t ion  of p i t ch  and yaw SAS i n .  

Except f o r  unique 

Comparative time h i s t o r i e s  a re  

Transient Effects  of Autopilot Fa i lures  

The e f f ec t s  of unannounced p i t ch  damper f a i l u r e s  were a l s o  b r i e f l y  
investigated.  
while the p i l o t  w a s  i n  a normal tracking run. This w a s  done during a s t a t i c  
run as well as a t  higher g leve ls  (up t o  3.5  g with 53 .O g v ibra t ion) .  
c a l  r e su l t s  ( f i g .  19) show a de f in i t e  decrease i n  tracking eff ic iency which 
becomes much more severe as the  stress l eve l  increases.  

The r a t e  feedback s igna l  i n  the p i t ch  channel w a s  made t o  f a i l  

Ty-pi- 

The period of p i l o t  adaptation, shown i n  f igure  20(a) ,  i s  t h e  time 
required f o r  the p i l o t  performance t o  s tabi l ize  after the  damper fa i l s .  
in tegra l  of the  forcing function squared i s  p lo t t ed  as a function of time. 
The two dashed curves a re  for the  t a s k  input and f o r  t he  basel ine showing the 
p i l o t  tracking i n  the  unstressed condition with no damper. The difference 
between the  two i s  the  reduction i n  e r r o r  due t o  t he  p i l o t ' s  e f f o r t  i n  t rack-  
ing. 
f a i l u r e  run (3.5 g -1-2.0 g vibrat ion)  shows the  p i l o t  i n i t i a l l y  tracking nor- 
mally (with the  same slope as the  "baseline" i n  Fig.  20(b) ) ;  then h i s  perform- 
ance begins t o  drop but s t i l l  maintains subs tan t ia l  effect iveness .  When 
damper f a i lu re  occurs h i s  effect iveness  drops t o  nearly zero  ( p a r a l l e l  t o  the  
in tegra l  of the  input squared) then recovers a f t e r  1-5 seconds temporarily 
after t h e  period adaptation. 
adapt; however, t h i s  case does i l l u s t r a t e  h i s  attempt t o  adapt during the  
rapid deter iorat ion i n  performance ( f i g .  1.9) a f t e r  t he  f a i l u r e .  The 15-second 
period would be f a i r l y  typ ica l  f o r  these data; however, many more subjects and 
tes t  runs must be considered before s ign i f icant  data can be presented f o r  an 
analysis of system f a i l u r e s .  
c a l  approaches t o  t he  adaptation process i s  contained i n  reference 22. 

The 

I n  t h i s  case adaptation w a s  achieved i n  about 5 seconds. The typ ica l  

It can be argued t h a t  the  p i l o t  does not t r u l y  

Further discussion of experimental and ana ly t i -  
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Effects  of Engine-Servo Rate Limiting 

The engine-servo r a t e  and posit ion l i m i t s  were chosen t o  simulate a 
typ ica l  la rge  high-thrust  booster rocket. The problem often a r i s e s  i n  a study 
of the  present type t h a t  the  vehicle and control dynamics are  not compatible 
with the  "standard" task,  however, t ha t  task has been selected so t h a t  compar- 
isons may be made with previous s tudies .  The highest  frequencies of the  pres-  
ent  t a sk  a re  somewhat too high f o r  the  airframe-autopilot combination used and 
it would be expected t h a t  increasing the  engine-servo r a t e  l i m i t  would permit 
t he  p i l o t  t o  improve h i s  performance. 
control  system under the  p i l o t ' s  direct ion can ac t  a l so  prevents him from 
tracking rapidly.  Hence, t he  portion of  the input not f i l t e r e d  by the  system, 
t h e  remnant, would tend t o  increase the error. 

Limiting the  rap id i ty  with which the  

To determine the  magnitude of t h i s  e f fec t  i n  the  present study a se r i e s  
of runs were made f o r  th ree  values of servo rate l i m i t s  under 1 g s t a t i c  con- 
d i t i ons  using one above-average p i l o t .  
form, figure 21, indicate  an improvement between 5'/sec and 20 /sec with a 
modest improvement up t o  50°/sec. 

These data  i n  sample t i m e  h i s to ry  
0 

SUMMARY OF RES'ULTS 

An invest igat ion of the e f f ec t s  of simultaneous vibrat ion at  11 cps 
(0 t o  -1-3.0 g) and l i n e a r  acceleration (1 t o  3.5 g) on the a b i l i t y  of t he  
human p i l o t  t o  perform a tracking task  using vehicle and control  dynamics 
typ ica l  of a large high-thrust  booster rocket has indicated the following: 

Both performance measures and subjective opinion indicated subs tan t ia l  
degradation i n  p i l o t  tracking effectiveness above vibrat ion leve ls  of 21.5 g 
a t  11 cps. The p i l o t s  were almost completely ineffect ive a t  23.0 g vibrat ion.  

Under vibration, the  p i l o t s  reached the engine-servo-rate and posi t ion-  
l i m i t  s tops o f t e n  enough tha t  a l i nea r  analysis of the  p i l o t  describing func- 
t i o n  w a s  d i f f i c u l t .  P i l o t  coments indicate t h a t  they could not perceive rate 
information from the  v isua l  display ( r a t e  of needle motion). It i s  therefore  
assumed t h a t  t h e  p i l o t s  were unable t o  generate the  lead t i m e  constant usual ly  
necessary i n  t h i s  type of tracking. 

A b r i e f  invest igat ion of t he  p i l o t ' s  a b i l i t y  t o  cope with sudden changes 
i n  the  control led element w a s  made by simulating p i t ch  damper f a i l u r e s .  
period of temporary adaptation required was approximately 1.5 seconds at a 
3.0 g steady and 52.0 g vibrat ion EBI condition, while f o r  a 1 g s t a t i c  EBD 
condition, it w a s  5 seconds. 

A 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Dee. 10, 1964 
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